©

Solutions of final exam 1402

مسئله اول: (• + • ا نمره.) دو حالت دو كيوبيتى زير را در نظر بگيريد:

$$
\begin{align*}
& \hat{\rho}=\frac{1}{4}\left(I+x \sigma_{x} \otimes \sigma_{x}-x \sigma_{y} \otimes \sigma_{y}+z \sigma_{z} \otimes \sigma_{z}\right) \\
& \hat{\sigma}=\frac{1}{4}\left(I+x \sigma_{x} \otimes \sigma_{x}-x \sigma_{y} \otimes \sigma_{y}+\sigma_{z} \otimes \sigma_{z}\right) \tag{1}
\end{align*}
$$

فاصهل، اين دو حالت و وم جينين شباهت آنها را با مه حساب كني.
we first calculate the distane. $\hat{\rho}-\hat{\sigma}=\frac{1}{4} \sum_{i=1}^{3}\left(r_{i}-s_{1}\right) \sigma_{i} \cdot \infty \sigma_{i}$

$$
\begin{aligned}
& \rightarrow \dot{\rho}-\hat{\sigma}=\frac{1}{4}\left|\begin{array}{cccc}
z-1 & \cdot & \cdot & \cdot \\
\cdot & 1-z & \cdot & \cdot \\
\cdot & \cdot & 1-z & \cdot \\
\cdot & \cdot & z-1
\end{array}\right| \text { when } \eta_{i}=r_{1}=s_{c} \text {. } \\
& d(\hat{\rho}-\hat{\sigma})=\frac{1}{4}\{z-1,1-z, 1-z, z-1\} \\
& (\hat{\rho}, \hat{b})=\frac{1}{2}\{|z-1|\}
\end{aligned}
$$

$F(\rho, \sigma)=$? Both P and σ are ein bloch diagond form: $\rho=P_{1} \oplus P_{2}$

$$
\begin{aligned}
& \sigma^{\prime}=\sigma_{1} \oplus \delta_{2} \\
& \delta=\frac{1}{4}\left|\begin{array}{ccc}
1+z & & 2 x \\
\begin{array}{ccc}
1-3 & 0 \\
0 & 1-3 \\
\hline
\end{array} \\
2 x & \rho_{1} & 1+3
\end{array}\right| \quad \sigma=\frac{1}{4}\left|\begin{array}{ll}
2 & 2 x \cdot \\
\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} \\
0 & \\
\sigma_{1}
\end{array}\right|
\end{aligned}
$$

therefore from the basic definition. \rightarrow

$$
\begin{aligned}
F(\rho, \sigma) & =\operatorname{tr} \sqrt{\rho^{1 / 2} \sigma \rho^{1 / 2}}=\operatorname{tr} \sqrt{\left(\rho_{1} \oplus \rho_{2}\right)^{1 / 2}\left(\sigma_{1} \oplus \sigma_{2}\right)\left(\rho_{1} \oplus \rho_{2}\right)^{1 / 2}} \\
= & \operatorname{tr} \sqrt{\left(\rho_{1}^{1 / 2} \oplus \rho_{2}^{1 / 2}\right)\left(\sigma_{1} \oplus \sigma_{2}\right)\left(\rho_{1}^{1 / 2} \oplus \rho_{2}^{1 / 2}\right)}=\operatorname{tr} \sqrt{\left(\rho_{1}^{1 / 2} \sigma_{1} \rho_{1}^{1 / 2}\right) \oplus\left(\rho_{2}^{1 / 2} \sigma_{2} \rho_{2}^{1 / 2}\right)} \\
= & \operatorname{tr} \sqrt{\rho_{1}^{1 / 2} \sigma_{1} \rho_{1}^{1 / 2}}+\operatorname{tr} \sqrt{\rho_{2}^{1 / 2} \sigma_{2} \rho_{2}^{1 / 2}}=F\left(\rho_{1}, \sigma_{1}\right)+F\left(\rho_{2}, \sigma_{2}\right)
\end{aligned}
$$

Since $\sigma_{1}=0 \rightarrow F(p, \sigma)=F\left(\rho_{2}, \sigma_{2}\right)$

- tho outer blocks.

From the identity $\quad\left(\sqrt{\lambda_{1}}+\sqrt{\lambda_{2}}\right)^{2}=\lambda_{1}+d_{2}+2 \sqrt{d_{1} d_{2}} \rightarrow$

$$
\begin{aligned}
& (\operatorname{tr} \sqrt{A})^{2}=\operatorname{tr} A+2 \sqrt{\operatorname{det} A} \rightarrow \quad \operatorname{tr} \sqrt{A}=\sqrt{\operatorname{tr}(A)+2 \sqrt{\operatorname{det} A}} \\
& \rightarrow F\left(\rho_{2}, \sigma_{2}\right)=\sqrt{\operatorname{tr}\left(\rho_{2} \sigma_{2}\right)+2 \sqrt{\operatorname{det}(\rho) \operatorname{drt}\left(\sigma_{2}\right)}} \\
& \rightarrow F(\rho, \sigma)=\frac{1}{4} \sqrt{4(1+z)+8 x^{2}+2 \sqrt{\left[(1+z)^{2}-4 x^{2}\right]\left[4-4 x^{2}\right]}}
\end{aligned}
$$

مسئله دوم: (• ץ نمره.) ظرفيت كلاسيى كانال كوانتومى واقطبش را براى كيوبيت ها حساب كنيد. اين كانال به شكل زير تعريف

$$
\begin{equation*}
\mathcal{E}(\rho)=(1-p) \rho+\frac{p}{2} I . \tag{Y}
\end{equation*}
$$

$$
\varepsilon(\rho)=(1-p) \rho+p \frac{I}{d}
$$

this channel is Covariand: $\quad \varepsilon\left(g \rho \rho^{t}\right)=g \varepsilon_{e} g{ }^{+} \quad \forall g \in \rho U(d)$

We have the following formula:

$$
\left.C_{d}(\varepsilon)=\operatorname{Max}_{\left\{\rho_{i}, \rho_{i}\right\}} X\left(\left\{\rho_{i j}, \rho_{i}\right\}\right)=\operatorname{Max}_{\left\{\rho_{i i} p_{i}\right\}}\left[S\left(\varepsilon\left(\sum_{i} \rho_{i} \rho_{i}\right)\right)-\sum_{i} P_{i} \rho\left(\varepsilon \varphi_{i}\right)\right)\right]
$$

Let $P_{i}=\frac{1}{|G|}$ and $\rho_{i}=g_{i} \cdot \rho g_{i}^{t}$ where $g_{i} \cdot \in G$ the covariance
group. $\rightarrow \rho \equiv \sum_{i} p_{1} \cdot \rho_{i}=\frac{1}{|G|} \sum_{i} g_{i} \cdot \rho g_{i}^{+} \rightarrow \rho g_{g}=g_{j} \cdot \rho \forall g_{1}$.
From Schor's Lemma: $\rightarrow \rho \propto I \rightarrow \quad$ Since $\operatorname{tr}(\rho)=1 \rightarrow \quad \rho=\frac{1}{d} I \rightarrow$

$$
S\left(\varepsilon\left(\sum_{1} p_{1} p_{1}\right)\right)=S\left(\varepsilon\left(\frac{1}{|G|} \sum_{1 .} g_{1 .} \cdot \rho g_{1 \cdot}^{t}\right)\right)=S\left(\varepsilon\left(\frac{I}{d}\right)\right)=S\left(\frac{I}{d}\right)=\log d .
$$

\rightarrow the firt term is maximized. $\rightarrow \quad C_{d}(\varepsilon)=\log d-M i n \sum_{i .} \frac{1}{|\sigma|} \delta_{(}\left(\varepsilon g_{c} \cdot \rho_{0}^{d}\right)$

$$
\begin{aligned}
& =\log d-\operatorname{Min} \sum_{i \cdot} \frac{1}{|G|} S\left(g_{i} \varepsilon\left(\rho_{0}\right) g_{1}^{d}\right) \xrightarrow{\text { Covariance }} \\
& =\log d-\operatorname{Min} S\left(\varepsilon\left(\rho_{0}\right)\right) .
\end{aligned}
$$

From convexity of $\rho \rightarrow \rho_{0}$ can be chosen to be pure. \rightarrow

SURd) invariance \rightarrow we con take $\rho_{0}=10 x_{0} \mid \rightarrow$

$$
\begin{aligned}
& \varepsilon(\mid 0 x \cdot 1)=(1-p)\left|0 x_{0}\right|+\frac{p}{d} I=\left|\begin{array}{llll}
1-p+\frac{p}{d} & & & \\
& & \frac{p}{d} & \\
& & & \\
& & & \frac{p}{d}
\end{array}\right| \\
& \rho(\varepsilon(10 x \cdot 1))=-\left\{\left(1-p+\frac{p}{d}\right) \log _{2}\left(1-p+\frac{p}{d}\right)+\frac{d-1}{d} p \log \frac{p}{d}\right\} \\
& \rightarrow C_{d}\left(\varepsilon_{d p}\right)=\log _{2} d+\left(1-p+\frac{p}{d}\right) \log _{2}\left(1-p+\frac{p}{d}\right)+\frac{d-1}{d} p \log \frac{p}{d}
\end{aligned}
$$

For $p \rightarrow D \quad C_{d}\left(\varepsilon_{d p}\right)=\log _{2} d \quad$,
For $p-1 \quad C_{d l}\left(\varepsilon_{d p}\right)=\log _{2} d+\frac{1}{d} \log \frac{1}{d}+\frac{d-1}{d} \log \frac{1}{d}=0$

مسئله سوم: (• (نمره.) كانال ميراكننده دامنه را براى كيوبيت ها در نظر گرفته و كيفيت آن را حساب كنيد. اين كانال به شكل زير
تعريف مى شود::

$$
\begin{equation*}
\Lambda(\rho)=A_{0} \rho A_{0}^{\dagger}+A_{1} \rho A_{1}^{\dagger} \tag{r}
\end{equation*}
$$

$$
A_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \cos \theta
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
0 & \sin \theta \\
0 & 0
\end{array}\right)
$$

كيفيت يک كانال نيز حنين تعريف مى شود:

$$
Q(\Lambda):=\operatorname{Min}_{\psi} F(|\psi\rangle, \Lambda(|\psi\rangle\langle\psi|))
$$

$$
\varepsilon_{A D}(\rho)=A_{0} \rho A_{0}^{\dagger}+A_{\rho} \rho A_{1}^{\dagger} \quad \text { where } A_{0}=\left[\begin{array}{cc}
1 & 0 \\
0 & c_{0} \theta
\end{array}\right] \quad A_{1}=\left[\begin{array}{cc}
0 & S_{i=\theta} \\
0 & 0
\end{array}\right]
$$

$$
Q\left(\varepsilon_{\Delta 0}\right)=M_{\text {in }} F\left(|\psi\rangle, \varepsilon_{\Delta D}(14 \times \psi \mid 1)\right.
$$

$$
=\min _{\psi}\left(\langle\psi| A_{0}|\psi x \psi| A_{0}^{\dagger}|\psi\rangle+\langle\psi| A_{1}|\psi x \psi| A_{1}^{\prime}|\psi\rangle\right)
$$

Lel $|\psi\rangle=\binom{\operatorname{Cn} \alpha}{\operatorname{Sind} e^{i \beta}} \rightarrow$ For simplicity fod $\operatorname{Cn} \theta=: c \quad \operatorname{Sin} \alpha=: s$

$$
\begin{aligned}
& =\operatorname{Min}_{\alpha, \beta}\left\{\left|c^{2}+s^{2} \cos \theta\right|^{2}+\left|s^{2} \operatorname{Sin} \theta\right|^{2}\right\} \\
& =\operatorname{Min}_{\alpha, \beta}\left\{\left|\cos ^{2} \alpha+\sin ^{2} \alpha \operatorname{Cn} \theta\right|^{2}+\left|\operatorname{Sin}^{2} \alpha \sin \theta\right|^{2}\right\} \\
& =\operatorname{Min}_{\alpha}\left\{\cos ^{4} \alpha+\operatorname{Sin}^{4} \alpha+2 \operatorname{Sin}^{2} \alpha \operatorname{Cn}^{2} \alpha \operatorname{Cos}^{2} \theta\right\} \\
& =\operatorname{Min}_{\alpha}\left\{1+2 \operatorname{Sin}^{2} \alpha \operatorname{Cos}^{2} \alpha\left(\operatorname{Cos}^{2} \theta-1\right)\right\}=\operatorname{Min}_{\alpha}\left\{1+\frac{1}{2} \operatorname{Sin}^{2} 2 \alpha\left(\operatorname{S}^{2} \theta-1\right)\right\}
\end{aligned}
$$

Sine $S_{0}^{2} \theta-1<0 \rightarrow$ the minimum is obtained evhen we set $\operatorname{Sin}^{2} 2 d=1$,

$$
=1+\frac{1}{2}\left(\cos ^{2} \theta-1\right)=\frac{1}{2}\left(1+\cos ^{2} \theta\right) . \quad Q\left(\varepsilon_{A D}\right)=\frac{1}{2}\left(1+\sin ^{2} \theta\right)
$$

ب: در بعد d يكى كا:ال كوانتومى به شُكل زير تعريف شده است:

$$
\begin{equation*}
\mathcal{E}(\rho)=\operatorname{Tr}(\rho) \frac{I}{d} \tag{9}
\end{equation*}
$$

مكمل اين كانال را بسازيد.
We know that: if $\varepsilon(\rho)=\sum_{\alpha} A_{\alpha} \rho A_{\alpha}^{+} \rightarrow$

$$
\varepsilon^{c}(\rho)=\sum_{i} K_{1} \cdot \rho K_{1}^{+} \quad \text { in which }\left(K_{i}\right)_{\alpha_{j}}=\left(A_{\alpha}\right)_{i j}
$$

eve will show that $\sum_{i} K_{1}^{+} \cdot K_{i}=I \quad-$ il
eve calculate the elements: $\quad\left(\sum_{1 .} K_{1} \cdot K_{1}\right)_{j k}=$

$$
\begin{aligned}
& \sum_{i, \alpha}\left(K_{i}^{t}\right)_{j \alpha}\left(K_{i}\right)_{\alpha k}=\sum_{i, \alpha} \overline{\left(K_{i}\right)_{\alpha j}}\left(K_{i i}\right)_{d k}= \\
& \left.=\sum_{i, \alpha} \overline{\left(A_{\alpha}\right.}\right)_{i j}\left(A_{\alpha}\right)_{i k}=\sum_{i ; \alpha}\left(A_{\alpha}^{t}\right)_{j i}\left(A_{\alpha}\right)_{i k} \\
& =\sum_{\alpha}\left(A_{\alpha}^{t} A_{\alpha}\right)_{j k}=(I)_{j k}=\delta_{j k}
\end{aligned}
$$

Now $\varepsilon(\rho)=\operatorname{Tr}(\rho) \frac{I}{d}=\frac{1}{I} \sum_{i j j}\langle u| \rho|i\rangle\left|j x_{j}\right|$

$$
\begin{aligned}
& \left.\rightarrow \varepsilon(\rho)=\frac{1}{d} \sum_{i j j}|j x \cdot| \rho| | \cdot x_{j} \right\rvert\, \\
& \left.\rightarrow \quad \varepsilon(\rho)=\sum_{i j j} A_{i j} \rho A_{i j}^{t} \quad \text { where } A_{i j}=\frac{1}{\sqrt{d}}|j x \cdot|\right)
\end{aligned}
$$

So the Kraus operators of $\&$ have double indices. \rightarrow

$$
\begin{aligned}
& \varepsilon^{c}(\rho)=\sum_{k} K_{k} \rho K_{k}^{\dagger} \quad \text { where } \quad\left(K_{k}\right)_{i j, m}=\left(A_{i j}\right)_{k i m} \Rightarrow \\
& \left(K_{k}\right)_{i j, m}=\langle k| A_{i j}|m\rangle=\frac{1}{\sqrt{d}}\langle h| j x \cdot|m\rangle=\frac{1}{\sqrt{d}} \delta_{k j j} \delta_{i m} .
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow \quad \varepsilon^{c}(\rho) & =\sum_{k} K_{k} \rho K_{k}^{+} \rightarrow \\
{\left[\varepsilon^{c}(\rho)\right]_{i j, p q} } & =\sum_{k, n}\left(K_{k}\right)_{i j, m} \rho_{m n}\left(K_{k}^{+}\right)_{n, p q} \\
& =\sum_{k, n}\left(K_{k}\right)_{i j, m} \rho_{m n}\left(K_{k}^{*}\right)_{p q, n} \\
& =\frac{1}{d} \sum_{k, m, m} \delta_{k j} \delta_{i m} \rho_{m n} \delta_{k q} \delta_{p n} \\
& =\frac{1}{d} \rho_{i p} \delta_{j q}=\frac{1}{d}(\rho \otimes I)_{i j j \rho q} \\
& \rightarrow \underbrace{}_{\varepsilon^{c}(\rho)}=\frac{1}{d} \rho \odot I
\end{aligned}
$$

